Home    Visitors    Seminars
A Soft Material Approach Towards Grand Energy Challenges

Speaker: Prof. YU Guihua
Materials Science and Mechanical Engineering, Texas Materials Institute, UT Energy Institute, The University of Texas at Austin, USA
Time: 2018-07-16 14:30
Place: ROOM 9004, Hefei National Laboratory Building


  Nanostructured materials have become critically important in many areas of technology, ranging from renewable energy, electronics, photonics, to biology and medicine, because of their unusual physical/chemical properties due to confined dimensions of such materials. This talk will present a new class of polymeric materials we developed recently: nanostructured functional polymer gels that are hierarchically porous, and structurally tunable in terms of size, shape, composition, hierarchical porosity, and chemical interfaces. These organic gels as functional organic building blocks offer an array of advantageous features such as intrinsic 3D nanostructured conducting framework, exceptional electrical conductivity and electrochemical activity to store and transport ions, synthetically tunable structures and chemical interfaces, and they have been demonstrated powerful for significant applications in energy and environmental technologies. Several latest examples on functional organic gels-enabled advanced technological applications such as high-energy lithium batteries, thermoresponsive safe electrolytes, solar steam generation and water desalination, and atmospheric water harvesting, will be discussed to illustrate ‘structure-derived multifunctionality’ of this special class of materials.

  Guihua Yu is a tenured professor of Materials Science and Mechanical Engineering at University of Texas at Austin. He received his B.S. degree with the highest honor in chemistry from University of Science and Technology of China, and earned Ph.D. from Harvard University, followed by postdoc at Stanford University. His research interests include rational synthesis and self-assembly of functional organic and hybrid organic-inorganic nanomaterials, and fundamental understanding of their chemical/physical properties for advanced energy and environmental technologies. He has published over 110 scientific papers in prominent journals such as Science, Nature, Nature Nanotech., Nature Commun., Chem. Soc. Rev., Acc. Chem. Res., PNAS, JACS, Adv. Mater., Angew. Chem. Energy Environ. Sci., Nano Lett., ACS Nano, which have received total citations over 17,500 times with H-index of 57. Yu has received a significant number of notable awards/honors for young investigators, including DOE Early Career Award, ACS ENFL Emerging Researcher Award, Nano Letters Young Investigator Lectureship Award, Caltech’s Resnick Young Investigator, Fellow of Royal Society of Chemistry, Camille Dreyfus Teacher-Scholar Award, TMS Society Early Career Faculty Award, Sloan Research Fellowship, Chemical Society Reviews Emerging Investigator Lectureship, MIT Technology Review ‘35 Top Innovators Under 35’ worldwide, IUPAC Prize for Young Chemists. Yu also serves in Advisory/Editorial Board of Chem (Cell Press), Chemistry of Materials (ACS); Nature Scientific Reports, Energy Storage Materials (Elsevier), Science China Materials, Science China Chemistry, Batteries & Supercaps (Wiley), Energy & Environmental Materials (Wiley), Frontiers in Energy Research, Applied Nanoscience (Springer).

Organizer: Hefei National Laboratory for Physical Sciences at the Microscale

Last updated: Jul. 2018   |  Copyright © Hefei National Laboratory for Physical Sciences at the Microscale  |  Top  |  Site Map