Home    News Center    Research Progress
Amorphous Molybdenum Sulfide/Carbon Nanotubes Hybrid Nanospheres Prepared by Ultrasonic Spray Pyrolysis for Electrocatalytic Hydrogen Evolution
Small 13(21):UNSP 1700111 Jun 2017

Ye, Zhifeng; Yang, Jia; Li, Bo; Shi, Lei; Ji, Hengxing; Song, Li; Xu, Hangxun

Developing cost-effective electrocatalysts with high activity and stability for hydrogen evolution reaction (HER) plays an important role in modern hydrogen economy. Amorphous molybdenum sulfide (MoSx ) has recently emerged as one of the most promising alternatives to Pt-based catalysts in HER, especially in acidic electrolytes. Here this study reports a simple ultrasonic spray pyrolysis method to synthesize hybrid HER catalysts composed of MoSfirmly attached on entangled carbon nanotube nanospheres (MoSx/CNTs). This synthetic process is fast, continuous, highly durable, and amenable to high-volume production with high yields and exceptional quality. The MoSx /CNTs hybrid catalyst prepared at 300 °C exhibits a low overpotential of 168 mV at the current density of 10 mA cm-2 with a small Tafel slope of 36 mV dec-1 . Electrochemical measurements and X-ray photoelectron spectroscopy analyses reveal that the CNT network not only promotes the charge transfer in corresponding HER process but also enhances the stability of the active sites in MoSx . This work demonstrates that ultrasonic spray pyrolysis is a reliable and versatile approach for synthesizing amorphous MoSx -based HER catalysts.

Last updated: Aug. 2017   |  Copyright © Hefei National Laboratory for Physical Sciences at the Microscale  |  Top  |  Site Map