News
Research Progress
Transparent and Flexible Nacre-Like Hybrid Films of Aminoclays and Carboxylated Cellulose Nanofibrils
2018-10-03
Advanced Functional Materials 28(27):1703277 Jul 2018 

Advanced Functional Materials 28(27):1703277

Abstract:
Advanced Functional Materials 28(27):1703277 Jul 2018

Liu, Yingxin; Yu, Shu-Hong; Bergstrom, Lennart

Abstract:
Nacre and other biological composites are important inspirations for the design and fabrication of multifunctional composite materials. Transparent, strong, and flexible hybrid films of aminoclays (AC) and carboxylated cellulose nanofibrils (CNF) with a nacre‐like microstructure at AC contents up to 60 wt% are prepared. The high transmittance of visible light is attributed to the high homogeneity of the hybrid films and to the relatively small refractive index contrast between the CNF‐based matrix and synthetic AC. The strength and strain to failure of the hybrids are significantly higher than biogenic nacre and other nacre‐mimicking nanocellulose‐based materials, e.g., montmorillonite‐CNF and graphene oxide‐CNF composite films. The excellent mechanical properties are related to the ionic bonds between the negatively charged carboxylic groups on the CNF and the positively charged amine groups on the AC nanoparticles. This work illustrates the significance of tailoring the interactions between small clay particles and biopolymers in multifunctional materials with potential applications as printable barrier coatings and substrates for optoelectronics.


Last updated: Nov. 2018   |  Copyright © Hefei National Laboratory for Physical Sciences at the Microscale  |  Top  |  Site Map