Name:Bi Guo-Qiang (毕国强)
Address:School of Life Sciences

University of Science and Technology of China

230026 Hefei, P. R. China
1985 - 1989B.S. (Physics), Beijing University, China
1990 - 1991M.S. (Physics), New York University, USA
1991 - 1996Ph.D. (Biophysics), University of California, Berkeley, USA
1996 - 2000Postdoctoral Fellow, University of California, San Diego, USA
2000 - 2009Assistant Professor, Associate Professor (with tenure), University of Pittsburgh School of Medicine, USA
2007 -Professor, University of Science and Technology of China
2014 -Senior Investigator, CAS Center for Excellence in Brain Research
1.Synaptic structure and plasticity
2.Neural circuit architecture and dynamics
3.Learning, memory and related brain diseases
4.Ultra-high resolution optical and electron imaging
1.Ultrastructural mechanisms underlying homeostatic plasticity of excitatory synapses, National Natural Science Foundation of China (Key Project) (2017-2021)
2.Techniques for mapping brain connectivity, Chinese Academy of Sciences (Strategic Priority Research Program) (2018-2023)
3.Cell Atlas of Mouse Brain-spinal Cord Connectome, NIH (Brain Initiative Cell Census Network cluster project) (2018-2023)
1.Wang H, Zhu Q, Ding L, Shen Y, Yang C-Y, Xu F, Shu C, Guo Y, Xiong Z, Shan Q, Jia F, Su P, Yang QR, Li B, He X, Chen X, Wu F, Zhou J-N, Xu F, Han H, Lau P-M & Bi GQ. Scalable volumetric imaging for ultrahigh-speed brain mapping at synaptic resolution. Natl Sci Rev 6, 982-992 (2019).
2.Liu YT, Tao CL, Lau PM, Zhou ZH & Bi GQ. Postsynaptic protein organization revealed by electron microscopy. Curr Opin Struct Biol 54, 152-160 (2019).
3.Liu YT, Jih J, Dai X, Bi GQ & Zhou ZH. Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. Nature 570, 257-261 (2019).
4.Tao CL, Liu YT, Sun R, Zhang B, Qi L, Shivakoti S, Tian CL, Zhang P, Lau PM, Zhou ZH & Bi GQ. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy. J Neurosci 38, 1493-1510 (2018).
5.Yuste R, Goering S, Arcas BAY, Bi G, Carmena JM, Carter A, Fins JJ, Friesen P, Gallant J, Huggins JE, Illes J, Kellmeyer P, Klein E, Marblestone A, Mitchell C, Parens E, Pham M, Rubel A, Sadato N, Sullivan LS, Teicher M, Wasserman D, Wexler A, Whittaker M & Wolpaw J. Four ethical priorities for neurotechnologies and AI. Nature 551, 159-163 (2017).
6.Fu ZX, Tan X, Fang H, Lau PM, Wang X, Cheng H & Bi GQ. Dendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticity. Nat Commun 8, 31 (2017).
7.Shim SH, Xia C, Zhong G, Babcock HP, Vaughan JC, Huang B, Wang X, Xu C, Bi GQ & Zhuang X. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci U S A 109, 13978-13983 (2012).
8.Zhang JC, Lau PM & Bi GQ. Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc Natl Acad Sci U S A 106, 13028-13033 (2009).
9.Wang HX, Gerkin RC, Nauen DW & Bi G-Q. Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci 8, 187-193 (2005).
10.Lau PM & Bi GQ. Synaptic mechanisms of persistent reverberatory activity in neuronal networks. Proc Natl Acad Sci U S A 102, 10333-10338 (2005).
11.Bi GQ & Rubin J. Timing in synaptic plasticity: from detection to integration. Trends Neurosci 28, 222-228 (2005).
12.Bi GQ & Poo Mm. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu Rev Neurosci 24, 139-166 (2001).

Last updated: Apr. 2020   |  Copyright © Hefei National Laboratory for Physical Sciences at the Microscale  |  Top  |  Site Map