Name:Zhen-Chao DONG (董振超)
Born:January , 1964, Anxi, Fujian, China
Address:University of Science and Technology of China

96 Jinzhai Road, Hefei 230026, P. R. China


Nature | News & Views: A close-up view of coupled molecules
Nature Reviews Materials: Imaging techniques: A tale of two dipoles
Nature News: Two techniques unite to provide molecular detail
Nature | News & Views: Techniques: Optical spectroscopy goes intramolecular
Chemical and Engineering News (June 10, CEN, USA): Raman Imaging Breaks The Nanometer Barrier
Physics today (USA): Optical spectroscopy goes subnanometer
Chemistry World (UK): Raman scattering reaches sub-nm resolution
Microscopy and Analysis (Wiley): STM and Raman scattering map single molecules
Ars technica (USA): New method can image single molecule, identify its atoms
Basque Research (Spain): Seeing inside a molecule using light
The Conversation (UK & Australia): New method can image single molecules and identify its atoms
Phys.Org (UK): Researchers use Raman spectroscopy and STM to allow chemical mapping of molecules to 1nm resolution
NBC (USA): Now, a way to peer inside individual molecules
87.04-90.12Ph.D., Fujian Institute of Research on the Structure of Matter, CAS, China
83.09-87.03M.S., Xiamen University
79.09-83.06B.S., Sichuan University
04.04-Professor, Hefei National Laboratory for Physical Sciences at Microscale
University of Science and Technology of China (USTC)
96.01-04.03Senior Researcher, Sub-Theme Leader
Nanodevice Group, National Institute for Materials Science (NIMS), Tsukuba, Japan
92.03-95.12Postdoctoral Research Associate
Ames LaboratoryDOE, Iowa State University, Ames, USA
90.12-92.03Assistant Professor
Fujian Institute of Research on the Structure of Matter, CAS,Fuzhou, China
1.Single-molecule optoelectronics by STM: Single-molecule electroluminescence, single-molecule Raman scattering, single-molecule tip-enhanced photoluminescence, electrically driven single-photon sources
2.Plasmon-enhanced spectroscopy and chemical reactions: plasmon-exciton coupling, nanoscale chemical identification and imaging, surface catalytic reactions and mechanism
3.Intermolecular interaction and energy transfer at the nanoscale
1.Optical characterization of nanostructures with ultrahigh spatial resolution, Ministry of Science and Technology, 2016-2021, PI
2.Nanoscale spectroscopic imaging and precision measurements under confined fields, National Natural Science Foundation, 2018-2022, PI
3.Optical measurements of molecular quantum properties with ultrahigh spatial resolution, Anhui Initiative in Quantum Information Technologies, 2018-2022, PI.
1.Zhang, L., Yu, Y. J., Chen, L. G., Luo, Y., Yang, B., Kong, F. F., Chen, G., Zhang, Y.*, Zhang, Q., Luo, Y., Yang, J. L., Dong, Z. C.*, and Hou, J. G.*, Electrically driven single-photon emission from an isolated single molecule, Nature Commun. 8, 580 (2017).
2.Zhang, Y., Meng, Q. S., Zhang, L., Luo, Y., Yu, Y. J., Yang, B., Zhang, Y., Esteban, R., Aizpurua, J.*, Luo, Y., Yang, J. L., Dong, Z. C.* and Hou, J. G.*, Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity, Nature Commun. 8, 15225 (2017).
3.Zhang, R., Zhang, X. B., Wang, H. F., Zhang, Y., Jiang, S., Hu, C. R.,Zhang, Y., Luo, Y.* and Dong, Z. C.*, Distinguishing Individual DNA Bases in a Network by Non-Resonant Tip-Enhanced Raman Scattering, Angew. Chem. Int. Ed. 56, 5561−5564 (2017).
4.Jiang, S., Zhang, X. B., Zhang, Y., Hu, C. R., Zhang, R., Zhang, Y., Liao, Y., Smith, Z. J., Dong, Z. C.*, and Hou, J. G., Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps, Light: Sci. & Appl. 6, e17098 (2017).
5.Zhang, Y., Luo, Y., Zhang, Y., Yu, Y. J., Kuang, Y. M., Zhang, L., Meng, Q. S., Luo, Y., Yang, J. L., Dong, Z. C.*, Hou J. G.*, Visualizing coherent intermolecular dipole-dipole coupling in real space, Nature 531, 623−627 (2016).
6.Liao, M. H., Jiang, S., Hu, C. R., Zhang, R., Kuang, Y. M., Zhu, J. Z., Zhang, Y., Dong, Z. C.*, Tip-Enhanced Raman Spectroscopic Imaging of Individual Carbon Nanotubes with Subnanometer Resolution, Nano Lett. 16(7), 4040−4046 (2016).
7.Jiang, S., Zhang, Y., Zhang, R., Hu, C. R., Liao, M. H., Luo, Y., Yang, J. L., Dong, Z. C.*, Hou, J. G.*, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering”, Nature Nanotech. 10(10), 865−869 (2015).
8.Zhang, R., Zhang, Y., Dong, Z. C.*, Jiang, S., Zhang, C., Chen, L. G., Zhang, L., Liao, Y., Aizpurua, J., Luo, Y., Yang, J. L., and Hou, J. G.*,“Chemical mapping of a single molecule by plasmon-enhanced Raman scattering”, Nature 498, 82−86 (2013).
9.Zhu, S. E.; Kuang, Y. M.; Geng, F.; Zhu, J. Z; Wang, C. Z.; Yu, Y. J.; Luo, Y.; Xiao, Y.; Liu, K. Q; Meng, Q. S.; Zhang L.; Jiang, S.; Zhang, Y.; Wang, G. W.*; Dong, Z. C.*; Hou, J. G., “Self-Decoupled Porphyrin with a Tripodal Anchor for Molecular-Scale Electroluminescence”, J. Am. Chem. Soc.135(42), 15794−15800 (2013).
10.Dong, Z. C.*, Zhang, X. L., Gao, H. Y., Luo, Y., Zhang, C., Chen, L. G., Zhang, R., Tao, X., Zhang, Y., Yang, J. L., and Hou, J. G.*, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons”, Nature Photon. 4, 50−54 (2010).

Last updated: Apr. 2019   |  Copyright © Hefei National Laboratory for Physical Sciences at the Microscale  |  Top  |  Site Map